Lingua

ELSEVIER Lingua 97 (1995) 37-80

The computational complexity of
natural language recognition:
A tutorial overview*

Hans van de Koot

Department of Phonetics and Linguistics, University College London, Gower Street,
London WCIE 6BT, UK

Received November 1994; revised April 1995

1. Introduction
2. Computational complexity theory
2.1. What is a computation?
2.2. What is complexity?
2.3. Easy, hard and still harder problems: Complexity classes
2.4. Problem size
2.5. The reduction technique
2.6. What’s in the next sections?
3. Linguistic theory and computational complexity
3.1. What is a Universal Recognition Problem?
3.2. LFG-recognition is NP-hard (Barton et al., 1987)
3.2.1. Outline
3.2.2. The proof
3.2.3. Interpretation of the complexity result for LFG
3.3. WG-recognition is NP-hard (van de Koot, 1992)
3.3.1. Word Grammar
3.3.2. The proof
3.3.3. Interpretation of the complexity result for WG
3.4. The complexity of the Barriers and Lasnik—Saito models (Ristad, 1991)
3.4.1. The stair construction
3.4.2. Problem 1: Stairs cannot enforce all 3SAT constraints
3.4.3. Problem 2: Neither the Barriers nor the Lasnik—Saito model allows a
stair
3.4.4. Conclusions: Agreement and locality

* I would like to thank Eric Sven Ristad, an anonymous Lingua reviewer, Neil Smith and Villy Rou-
chota for their comments on a previous version.

0024-3841/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0024-3841(95)00018-6

38 J. van de Koot | Lingua 97 (1995) 37-80

4. The language complexity game (Ristad, 1993)
4.1. Introduction
4.2. The object of study: Direct complexity analysis
4.3. The method of study: The language complexity game
4.4. The complexity of language computations
4.5. Contributions of Ristad’s work to the field of linguistics
5. Conclusions
Appendix
References

1. Introduction

In recent years a substantial amount of research has been invested in applying the
computer science tool of computational complexity theory to natural language and
linguistic theory. Some of this work has been published (e.g. Ristad, 1986; Barton et
al., 1987; Ristad, 1993) while other results have circulated in some other form (e.g.
Ristad, 1991; Giorgi et al., 1989; van de Koot, 1992). In this article I give an
overview of this exciting area of study and discuss some results and their implica-
tions for the field of linguistics.

Every normal human being acquires a natural language and eventually produces
and comprehends that language with astonishing ease and speed. These abilities of
language users are based on certain computations, which following Ristad (1993) we
will refer to as language computations. The ultimate goal to which theoretical lin-
guistics hopes to contribute is to provide a full characterisation of these computa-
tions. We will refer to such a complete theory of the computations performed by the
language user as the language model.

Unfortunately, we do not have direct access to the computations performed by the
language user. One way in which we might find out more about them is to study the
knowledge of language that these computations make use of. This is the research
program of generative linguistics. A generative grammar is not a computational
model: it does not characterize a language computation. Whether such studies give
us any direct insight into the language computations performed by language users
has long been hotly debated, but it seems uncontroversial to maintain that a gener-
ative theory is a necessary first step on the way to a complete theory of human
language.

A second way in which we could hope to uncover truths about the language model
is to study the complexity of the problems posed by the production, comprehension
and acquisition of language. By the complexity of a computation we mean the rate
at which the computation consumes abstract resources, such as space and time. This
avenue was first explored in the early 1950s following Chomsky’s invention of for-
mal languages and his well-known complexity hierarchy. Chomsky demonstrated
convincingly that regular grammars and their associated finite-state automata cannot
capture essential properties of natural languages, namely those that depend on the
hierarchical structure of natural language expressions (e.g. the difference in meaning

J. van de Koot | Lingua 97 (1995) 37-80 39

between (black board) eraser and black (board eraser) depends on the way the
words in the string are grouped together). This showed that human languages had to
be more complex than regular languages.

However, studying the complexity of natural language with the help of the
Chomsky hierarchy suffers from two essential weaknesses. First, there is no reason
why the human language model should mesh neatly with a formal mathematical
model. This has the consequence that although we might be able to find out some-
thing about the lower bound of the complexity of the class of natural languages
(that it is at least so hard), we would only ever find out something about the upper
bound (i.e. that it is at most so hard) if we had an exact match between language
class and automaton, a very unlikely situation. Second, complexity studies based on
the Chomsky hierarchy are concerned with weak generative capacity only and
therefore do not give us much insight into properties of the grammar. Since our ulti-
mate aim is to learn something about the language model, getting a result about the
weak generative capacity that is required to generate natural languages is hardly
very satisfying.

The work on complexity theory and natural language discussed below seeks to
improve on this state of affairs by using much subtler tools to obtain insight into the
complexity of language recognition for particular theories of grammar (Ristad, 1986,
1988, 1991, 1993; Barton et al., 1987; Giorgi et al., 1989; van de Koot, 1992). As
we will see, such inquiries not only give us a window on the complexity of natural
language comprehension but they can pinpoint unnaturally powerful machinery in a
linguistic theory and suggest ways in which the theory might be improved.

Ristad’s (1993) pioneering work goes one radical step further. He argues that
since the linguistic theory is not a model of the language user at any level of abstrac-
tion (because it is a model of linguistic knowledge and not of how that knowledge is
put to use), looking at the recognition problems associated with linguistic theories is
still rather a roundabout way of finding out about the complexity of language com-
putations. A better approach would study the complexity of language comprehension
problems directly, without reference to the peculiarities of particular linguistic theo-
ries at all. The complexity results so arrived at relate language computations to other
computations whose structure we understand and provide a design target for lan-
guage algorithms (i.e. for algorithmic characterizations of language computations).
The latter kind of result makes it possible to choose between competing analyses of
a linguistic problem on the grounds that the computational complexity of one but not
the other exceeds the design target. Ristad gives a nice example of such a result in
the domain of VP-ellipsis.

The picture that emerges from all this work and in particular from Ristad (1993)
is that natural language computations are computationally intractable — they cannot
be solved in a reasonable amount of time by any known algorithm or machine. But
they are intractable in just the right way in that they have the useful property of
being on the verge of tractability: their solutions are hard to find but easy to check
once found.

I begin this tutorial overview with a brief introduction into some basic concepts
and techniques of computational complexity theory and discuss how this theory

40 J. van de Koot | Lingua 97 (1995) 37-80

could be usefully applied in the domain of linguistic theory (section 2). Here I do
not consider any concrete results but focus on the advantages and disadvantages of
the method per se. In sections 3 and 4 we will see how complexity theory can be
used to obtain an understanding of the complexity of language computations. In
section 3 we consider how complexity theory can be used to obtain results about the
complexity of so-called Universal Recognition Problems (URPs) for a number of
linguistic theories. These results give us insight into how difficult it is to determine
that a given sentence is generated by a given grammar. To the extent that this prob-
lem is similar to the problem solved by language users, the complexity results thus
obtained give us insight into the complexity of language computations. In particu-
lar, [review Barton et al.’s (1987) proof that the URP for Lexical Functional Gram-
mar is computationally intractable and my own proof that the same is true of the
URP for Word Grammar (van de Koot, 1992). What this means in practice is that
there is nothing about these theories of grammar that guarantees efficient parsabil-
ity. I then take a critical look at Ristad’s (1991) proof that the URP for the Las-
nik—Saito and Barriers models of grammar is computationally intractable. I argue
that there is a mathematical flaw in the proof and in addition that the linguistic
model to which it applies is not a correct representation of either Lasnik and Saito
(1984) or Chomsky (1986). I conclude that Ristad (1991) has therefore not demon-
strated that the URP is computationally intractable for these models. The discussion
in section 3 includes substantial excerpts from Ristad (1991). I gratefully acknowl-
edge his permission to reproduce this material here. In section 4 we turn to Ristad’s
(1993) approach to the study of the computational complexity of language produc-
tion, comprehension and acquisition. In this work the complexity of language com-
putations is studied directly, independently of the peculiarities of particular linguis-
tic theories. I discuss the goals and methods of this work and explain its importance
for linguistic research. Section 5 summarizes the main contributions of complexity
theory to the field of linguistics.

2. Computational complexity theory
2.1. What is a computation?

A computation may be characterized at various levels of abstraction. Language
computations, for instance, may be described as sequences of brain state transitions,
or as an algorithm which specifies how each state is mapped into its successor state
by some mentally represented computational device, or very abstractly as a compu-
tational problem. A computational problem only specifies the relation between the
inputs and outputs of a computation, abstracting away completely from how a com-
putational device computes that mapping. As a direct consequence of the fact that we
can talk about computations at various levels of abstraction, we can also talk about
the complexity of a computation at various levels of abstraction. In what follows, we
will mostly talk about the complexity of computations at the highest level of abstrac-
tion, i.e. about the complexity of computational problems.

J. van de Koot / Lingua 97 (1995) 37-80 41

2.2. What is complexity?

A computational problem is solved by carrying out a computational procedure
(some well-defined sequence of steps), otherwise known as an algorithm. Algo-
rithms are executed by computational devices. Any known computational device
(including the reader) needs a certain amount of (computation) time and (memory)
space to carry out its computations. The rate at which a computation consumes these
resources is a measure of the complexity of that computation. Therefore, the com-
plexity of a problem can be determined by looking at the algorithms that solve it.

We can distinguish between the time complexity and the space complexity of a
computation (or computational problem). It would not be very useful if we had to
express the time and space complexity of computations relative to particular kinds of
computing devices, so that we would have to revise our complexity estimates every
time a new generation of computers appeared on the market. But fortunately there is
no need for that. We can express time in terms of the number of ‘steps’ (state tran-
sitions) used and space in terms of the maximum amount of information required at
any of these steps. Since the number of steps and the amount of space required is
likely to be dependent on the size of the problem, it is necessary to quantify the
complexity of a problem in terms of its size (after all you need more time to sort 100
names alphabetically than you need to sort 50). For instance, we might determine
that a given computational problem has polynomial time complexity. The number of
steps required to solve an instance of such a problem would be related to its size by
a polynomial function, i.e. a function of the form c-n*, where ¢ and k are constants
and n expresses the size of the problem instance. The time complexity of some other
problem might be given by a super-polynomial function, i.e. by a function with an
exponential growth rate (of the form c-£") or worse.

For the purposes of complexity theory, we are not interested in the value of the
constant ¢ in the functions expressing the time and space complexity of a problem.
What we really want to know is the order of growth of the function. The reason for
this is quite simple. The constant in the complexity functions is fairly meaningless:
the difference between a problem with a time complexity of say 10007 and one with
a time complexity of just 5 may be more or less obliterated in practice by the
increase in speed of the next generation of processors. But no amount of increase in
processor speed will ever bridge the gap between a problem with polynomial time
complexity and one with a super-polynomial time complexity. A brief example of a
super-polynomial time problem, the Monkey Puzzle Problem (from Harel, 1987)
should suffice to make clear why.

One popular incarnation of the Monkey Puzzle Problem involves nine square
cards whose sides are imprinted with the upper and lower halves of coloured mon-
keys. The objective is to find an arrangement of the nine cards into a 3x3 square
such that monkey halves match and colours are identical wherever edges meet. What
we want to do is look at the complexity of a generalized version of this problem in
which we are given N = M? cards and our task is to determine whether there exists
an MxM arrangement of the N cards such that halves and colours match wherever
edges meet. All that is required is a yes/no-answer. We can simply quantify the size

42 J. van de Koot | Lingua 97 (1995) 37-80

of this general problem in terms of the number of cards we are given. We make the
additional assumption that the cards have a fixed top, bottom, left and right side, so
that they are not to be rotated.

As Harel points out, a naive solution to this problem is easily constructed as fol-
lows. As each problem instance involves only a finite number of cards, it follows
that there are only a finite number of MxM arrangements. For each such arrangement
it is a trivial matter to check whether it is a legal arrangement. So all we need to do
is devise an algorithm that will go through all possible arrangements in turn, stop-
ping and saying ‘yes’ when a legal arrangement is found and stopping and saying
‘no’ when all possible arrangements have been considered and no legal one was
found. What would be the time complexity of this algorithm? Suppose we are given
N = M? cards. The cards will eventually be arranged in a MxM square. Thus for the
first card there will be N possible positions. For the second N—1, for the third N-2,
and so on. The total number of arrangements is therefore given by:

NX(N-1)x(N-2)x(N-3) x...x1

In other words by the factorial of N (or N!). Thus, for 25 cards there are 25! possible
arrangements. In the worst case (that is, if there is no legal arrangement), the computer
will have to go through all 25! arrangements. Let us assume that we have a computer
which can construct and evaluate a million arrangements per second. This computer
will take well over 490 billion years to do this. Clearly, an algorithm with this kind of
time complexity is not acceptable. Although there exist algorithms for the Monkey
Puzzle Problem that will do slightly better than the naive one outlined above, there
does not exist one that makes it worth your while to hang around waiting for solutions,
since in the worst case they still take thousands of years just for the small 5x5 version.

Table 1 (from Harel, 1987) gives the time consumption of various hypothetical
algorithms for the Monkey Puzzle Problem running on a computer capable of carry-
ing out a million instructions per second. As can be verified without too much effort,
waiting times are reasonable as long as the number of instructions to be carried out
to obtain a solution stands in a polynomial relation to the size of the problem. By
contrast, waiting times for problems which do not have a polynomial-time solution
get out of hand rather quickly. And for obvious reasons such problems are often
referred to as being ‘computationally intractable’.

2.3. Easy, hard and still harder problems: Complexity classes

A lot of everyday problems like alphabetical sorting can be solved in polynomial
time on a normal computer (that is in time #/ or less, for some constant f). Such prob-
lems are called tractable, for fairly obvious reasons. Complexity theory calls this
class P: the class of problems solvable in Polynomial time on a deterministic' Tur-
ing Machine (TM).

' A computer is said to operate deterministically if its actions are fully determined by its input and its
internal state. Real life computers must operate deterministically because unfortunately magic oracles of
the kind mentioned in the text do not exist.

J. van de Koot / Lingua 97 (1995) 37-80 43

Table 1
Time consumption of hypothetical solutions to the monkey puzzle problem (assuming one instruction
per microsecond).

Function N
10 20 50 100 300
N2 1/10 000 1/2500 1/400 1/100 9/100
second second second second second
N3 1/10 sec. 3.2 seconds 5.2 minutes 2.8 hours 28.1 days
2N 1/1000 1 second 35.7 years 400 trillion a 75-digit
second centuries number
of centuries
NN 2.8 hours 3.3 trillion a 70-digit a 185-digit a 728-digit
years number of number of number of
centuries centuries centuries

For comparison: the ‘Big Bang’ was approximately 15 billion years ago.

Other problems, like the Monkey Puzzle Problem, take longer, no matter how hard
one tries to write an algorithm that will do better., Other famous examples of
intractable problems are the Travelling Salesman Problem and Satisfiability (or
SAT). A particular variant of SAT called 3SAT goes likes this. Given an arbitrary
Boolean formula like

@vbveoAa®vdvaAa@vbve)a@vb ve)a@Vvb Ve

is there an assignment of true and false to the propositional letters such that the
whole expression is true (where a is true if a”is false and vice versa)? 3SAT is dif-
ficult because all you can do to solve an instance of it is guess an assignment of truth
values to the literals and test for satisfaction. This means that in the worst case one
may have to try out all possible assignments. With » binary valued variables in an
arbitrary formula, one will end up testing 2" truth-value assignments. Since the num-
ber of different variables can rise with the length of the formula, the complexity of
3SAT is proportional to 2", or exponential time.

The Monkey Puzzle Problem and 3SAT have one very interesting property in
common. Although finding a legal arrangement of the tiles of a Monkey puzzle may
take an incredible amount of time in the worst case, checking whether a given
arrangement of tiles is a legal one is entirely straightforward. Similarly, given any
3SAT formula, we can verify quite quickly whether a given assignment of truth val-
ues to the propositional letters is a good or a bad one. All we have to do is walk
through the formula from left to right checking whether the assignment makes each
clause true. It should be intuitively clear that this can be done in polynomial time
(proportional to the length of the formula times the length of the guess list).

Taking this one step further, suppose we had a computer that contained an oracle
which could guess a satisfying assignment of truth values for a 3SAT instance if

44 J. van de Koot /| Lingua 97 (1995) 37-80

there is one. Clearly, such a computer could solve 3SAT in polynomial time
(because it could check for satisfaction in polynomial time). Such a guessing com-
puter is called nondeterministic and the class of problems solvable by a Nondeter-
ministic TM in Polynomial time is called NP.

Complexity theorists have discovered many problems like 3SAT, which have the
property that they only seem to have exponential-time deterministic solutions, but
which have efficient (i.e. polynomial-time) nondeterministic solutions. There is no
proof for an exponential time lower bound on the complexity of these problems, but
it is strongly suspected that P NP. All problems in P are of course a subset of those
in NP. But problems like 3SAT summarize the complexity of a whole class of prob-
lems which are in NP and not known to be in P. This class is held together by a
method called reduction, which 1 discuss below. The problems in this class are
called NP-hard, because they are as hard as any problem in NP. If an NP-hard prob-
lem is in addition known to be solvable by the hypothetical guessing computer in
polynomial time, as is 3SAT, then it is called NP-complete.

Another complexity class that will be relevant to our discussion is PSPACE, the
class of problems solvable in polynomial space on a deterministic TM. PSPACE
contains NP because polynomial space allows the simulation of an entire NP-com-
putation. Intuitively, this is because space, unlike time, can be reused. While NP-
complete problems can be verified in polynomial time, problems in PSPACE proba-
bly cannot (although there is no proof for this). A problem which is PSPACE-hard
and which is furthermore known to be in PSPACE is called PSPACE-complete. Just
as 35AT is a typical NP-complete problem, Quantified Boolean Formulas (QBF) is
a typical PSPACE-complete problem. As its name already indicates, QBF combines
Boolean expressions with the universal (V) and existential (3) quantifiers. An
instance of the QBF problem is given by a quantified Boolean formula of the form

QlleZYZ Qm))mF(ylv Yaseee ym)

where (9, is either a universal or an existential quantifier ranging over the set ‘true,
false’ and none of the variables y; is free. The problem is to determine whether the
quantified formula is true. A QBF problem contains an arbitrary number of alternat-
ing existential and universal quantifiers. This makes even the verification of a satis-
fying assignment very hard. Intuitively, this can be understood as follows. A 3SAT
problem over m variables corresponds to a restricted QBF, which contains only exis-
tential quantifiers. Verifying the satisfiability of such a formula is straightforward,
because the truth of an existentially quantified formula can be verified by finding
one true instance. Given a satisfying assignment, all one has to do is make one pass
through the QBF checking that every conjunct in the formula comes out true. But a
satisfying assignment for the general QBF problem is much more difficult to verify,
because the truth of a universally quantified formula can only be verified by check-
ing that all possible values of the variable make the formula true. Suppose the length
of the QBF is m. Then the number of universal quantifiers is proportional to m.
Therefore, the total number of assignments that have to be checked for verification
is proportional to 2”. Verification of a QBF could therefore take exponential time.

J. van de Koot | Lingua 97 (1995) 37-80 45

Finally, the classes EXP and EXP-POLY contain problems that are provably expo-
nential time. These classes therefore include all the problems in both NP and
PSPACE, for which such proofs do not exist.

24. Problem size

Complexity theory is built on the assumption that problems can grow arbitrarily in
size. This is a far from trivial assumption for the natural language recognition prob-
lems that we will be looking at. After all, our sentences are bounded in length by
such factors as memory limitations and the finite duration of a human life. Since nat-
ural language problems are always bounded in size, it would seem that any com-
plexity results are doomed to be irrelevant. As Barton et al. (1987: 20) point out, this
argument “explodes on complexity theoretic grounds just as it does in introductory
linguistics classes”. The point being that once we have established the principles that
underlie the structure of sentences of reasonable length, there doesn’t seem to be any
natural bound on the application of those principles. In other words, the grammar
generates sentences of indefinite length. There are practical reasons why sentences
exceeding a certain length are never produced but those reasons bear no relation to
the underlying structure of the language.

Very much the same reasoning applies in the case of computational complexity.
Problems of bounded size always have an efficient solution.? This is because we
could calculate all the solutions in advance and put them in a table. But this leads to
totally counterintuitive results. Barton et al. discuss the example of checkers. They
point out that complexity theorists study

“the playing of checkers on an arbitrary nxn board, rather than ‘real’ checkers, because they can use
complexity theory to study the structure and difficulty of the problem. The problem with looking at
problems of bounded size is that results are distorted by the boring possibility of just writing down all
the answers beforehand. If we study checkers as a bounded game, it comes out (counterintuitively!)
as having no appreciable complexity — just calculate all the moves in advance — but if we study nxn
boards, we learn that checkers is computationally intractable (as we suspected).” (Barton et al., 1987:
20)

So by restricting a problem to some bounded size we are obscuring the true com-
plexity (and the sources of complexity) of that problem. Therefore, the idealization
to problems of unbounded size is a necessary and justified one.

2.5. The reduction technique

To show that one problem is as difficult as another, complexity theorists use a
technique called reduction. Here is how it works. Take a problem of known com-
plexity, like 3SAT. Then construct an efficient mapping from instances of the prob-
lem of known complexity to instances of the new problem, preserving yes/no

2 In fact, complexity theory treats such problems as having zero complexity.

46 J. van de Koot | Lingua 97 (1995) 37-80

answers.? As before, efficient means polynomial time. It follows that the new prob-
lem must be intractable as well. It is easy to see why. Suppose the new problem has
a polynomial-time solution. Then the problem of known complexity, which we
assumed was intractable, is solvable in polynomial time as well (namely by mapping
it into the new problem). This is because the composition of two polynomial time
functions is itself a polynomial time function:

Known hard — Polynomial —» New
problem time problem
instances reduction instances

If in addition an NP-completeness proof is desired, one should demonstrate that the
new problem can be solved in polynomial time by the hypothetical guessing com-
puter.

2.6. What’s in the next sections?

In sections 3 and 4 we look at how complexity theory can be used to obtain an
understanding of the complexity of language computations. In section 3 we use com-
plexity theory to obtain results about the complexity of so-called Universal Recog-
nition Problems (URPs) for Lexical Functional Grammar, Word Grammar, and the
Lasnik—Saito and Barriers models of transformational grammar. In section 4 we turn
to Ristad’s (1993) approach to the study of the computational complexity of lan-
guage production, comprehension and acquisition.

3. Linguistic theory and computational complexity
3.1. What is a Universal Recognition Problem?

Barton et al. (1987) focus on grammatical recognition problems that have the fol-
lowing form:

Given a grammar G (in some grammatical framework) and a string a, is @ in the
language generated by G?

In what follows we consider several recognition problems of this form. This kind of
problem allows one to study the complexity of an entire class of grammars, namely
those specified by some grammatical theory (like Government Binding theory or
Generalized Phrase-Structure Grammar). For this reason, it is also known as the Uni-
versal Recognition Problem (URP) for a linguistic model.

3 For the purposes of complexity theory, problems are always (re-)phrased as yes/no-questions. The

reduction must be carried out in an ‘answer-preserving’ way, so that we can solve instances of the old
problem by solving the corresponding instances of the new problem.

J. van de Koot / Lingua 97 (1995) 37-80 47

This should be contrasted with what is the tradition in weak generative capacity
analysis, namely, to state such problems as fixed language recognition problems:

Given a string ¢, is o in some independently specified set of strings?

While these problems look very similar they are not, since in the fixed language
recognition problem we are free to choose the grammar any way we like. Therefore,
the recognition problem contains just one variable, namely the sentence to be recog-
nized. By contrast, in the URP we have two variables: the string to be recognized
plus the grammar. As a consequence the grammar size appears as a parameter in the
complexity formulas. As one might expect, the URP is harder because the recogni-
tion algorithm must be able to accommodate any grammar. The Fixed Language
Recognition problems are easier, because one is permitted to vary the grammar at
will to get the most efficient algorithm possible.

The complexity of the URP for a linguistic theory is a direct measure of how dif-
ficult it is to parse the languages generated by the class of grammars specified by the
theory. Parsing is the process of using a grammar to assign a syntactic structure to a
string of words. It is widely assumed that parsing is an integral component of the
computations carried out by language users* and that apart from the constraints
imposed by performance limitations, human sentence parsing is extremely efficient.
As a result of this generally held view, a sizable section of psycholinguistic research
in sentence processing is concerned with the question why parsing sometimes fails.
One notable exception to the view that parsing is easy appears in Chomsky and Las-
nik (1991: 4), who point out that parsing is often “slow and difficult, or even impos-
sible, and it may be in ‘error’ in the sense that the percept assigned (if any) fails to
match the [structural description] associated with the signal ...”. They take the view
that language is not “readily usable or ‘designed for use’. The subparts that are used
are usable, trivially; biological considerations lead us to expect no more than that”.

Although the assumption that parsing must be very efficient has never been based
on anything but the observation that normal humans seem to be rather good at com-
prehending language, they have the air about them of being common-sense. For this
reason, it may come as a bit of a shock that it has been shown for all well-established
linguistic theories of human syntactic knowledge that their associated URP is NP-
hard. What this means is that not one of these theories guarantees efficient parsing!
We will shortly look at some of the proofs for these results. Here we first ask how
one goes about constructing such a proof.

We already know that complexity results rely on the reduction technique. We
must therefore choose a known NP-hard problem and translate this known problem
into the URP for the linguistic theory we are interested in. But how does one know
which known problem to pick? The general idea is to spot a similarity between the
known and the new problem. All the reductions we will consider in this section will
be from 3SAT. Recall that 3SAT is difficult because of the combined effect of what

4 An assumption which is not shared by Ristad, as we will see in section 4.

48 J. van de Koot / Lingua 97 (1995) 37-80

might be called lexical ambiguity (each propositional letter can be either true or
false) and the need for agreement/consistency (propositional letters must have con-
sistent truth assignments) throughout the formula to be tested for satisfaction. As
natural languages exhibit lexical ambiguity (is police a noun or a verb?) and agree-
ment phenomena over unbounded distances as well (for instance Case agreement
between a wh-phrase and its associated gap), we are led to suspect that descriptively
adequate linguistic theories will contain mechanisms that are precisely those needed
to solve the 3SAT problem.

It is not difficult to find examples of natural language phenomena that can give
rise to computationally very difficult problems. For instance, the combination of lex-
ical and structural ambiguity in (1) makes it quite difficult to determine whether it is
a grammatical sentence or not:

(1) police police police police police

Interestingly, it is not difficult to verify that (1) is grammatical if one is given some
solution to the parsing problem it represents, such as the one in (2):

(2) policey, policey policey [(who;) policey policey ¢ |

Recall that this is the hallmark of NP-complete problems: difficult to solve, easy to
verify.

The reductions we will look at rely on the mechanisms for agreement and ambi-
guity in a particular linguistic theory to solve 3SAT. The proofs will be easier to fol-
low if one gives some thought to what is required to solve the 3SAT problem. In
general, to solve 3SAT we need three ‘components’:

(i) A truth-setting component which assigns a truth value to propositional letters;

(ii) A satisfaction component which forces one literal in each clause in the problem
instance to be true;

(iii) A consistency component which forces the propositional letters to have consis-
tent truth assignments.

Given these three components it will be possible to decide whether a given problem
instance is satisfiable (a basic generate-and-test method will do).

To reduce 3SAT to the URP for some grammatical framework, we must first
exhibit a mapping from 3SAT problem instances to sentences for recognition. In the
proofs that follow, this is achieved simply by erasing the ‘ A’ and ¢ vV’ symbols and
the brackets in the 3SAT problem instance to produce a sentence for recognition. We
then demonstrate how to construct a grammar in the particular linguistic theory that
will generate such a mapped sentence iff the corresponding 3SAT instance is satisfi-
able. For the reduction to be any good, we must show that it can be carried out in
polynomial time. What building the grammar boils down to is that one demonstrates
how the linguistic framework allows one to realize the three components listed
above.

J. van de Koot / Lingua 97 (1995) 37-80 49

3.2. LFG-recognition is NP-hard (Barton et al., 1987)

3.2.1. Outline

What follows is my rendition of Barton et al.’s original proof, which is based on
the insight that the essential ingredients of a solution to 3SAT can be very easily
realized in LFG. In particular, an LFG can enforce feature agreement across arbitrary
distances in a c-structure tree. This is a direct result from (i) the possibility to pass
any feature up a c-structure tree (using the f-structure equation (=l)) and (ii) the
presence of the constraint of functional coherence, which guarantees consistent
assignment of feature values.

The proof demonstrates how an LFG, together with an appropriate sentence to be
tested for LFG membership, can be constructed in time polynomial in the size of an
input 3SAT instance. The LFG generates this sentence iff the original 3SAT instance
is satisfiable.

3.2.2. The proof
We start out by posing the universal recognition problem:
Given an arbitrary lexical-functional grammar G and a sentence q, is o € L(G)?

Theorem: LFG Recognition (LFGR) is NP-hard.

Proof. The reduction is from 3SAT. Given a 3SAT instance F of length n using the
m variables x,...x,,, reduce 3SAT, a known NP-complete problem to LFGR in poly-
nomial time.

To construct the LFGR problem, we map F into a sentence « to be tested for LFG
membership. This involves erasing the parentheses and the vV and A symbols in F.
We are left with just the string of literals.

Next, we build the LFG that we will use for the membership test. We must write
an LFG with the following properties:

(i) It must reproduce the clause structure of 3SAT;
(ii) It must force at least one literal in each clause to be true;

(iii) It must use LFG agreement machinery to enforce coherent truth assignments.

The grammar will contain the following c-structure rules:

1 S—>SS

2 S>TIT
3 S—>TTF
4 S ->TFT
5 S—>FIT
6 S — TFF

5 Although I have not indicated this in the text, I quote liberally from the source throughout the proof.

50 J. van de Koot / Lingua 97 (1995) 37-80

7 S - FFT
8 S —>FTF

These rules reproduce the required clause structure and will force one literal in every
clause to be true. We can use the same grammar for all problem instances. Finally,
we add lexical entries, one pair for each literal x; and x ;. The lexicon varies with the
particular 3SAT instance:

T: x F: X;

(Tx =T (T x; =F)
| S F: X’

(T x; =F) (T x=T)

We need four entries per propositional letter to represent the following four cases:
(i) x=T (pass up the feature x=T), (ii) x=F (pass up the feature x=F), (iii) x=T
(pass up the feature x;=F), (iv) x’=F (pass up the feature x;=T). It follows that we
need 4m entries in all.®

Finally, we require the feature set represented at a given node to be unified with
the feature set represented at its mother node. In LFG this operation is represented
b% the notation (T=l) on a node in the c-structure tree. We therefore add the LFG
(T=1) annotation to all right-hand side constituents in rules 1-8, so that all features
associated with the f-structure built up at each node will be unified with the features
of its mother. In this way we will be able to enforce agreement between terminals
over unbounded distances:

S— S S
(T=l) (T=d)
S—> T T

T
(T=) (T=d) (T=))

Plainly, the whole construction takes time polynomial in the size of the formula F:
The mapping from F' to o can be carried out in a linear left-to-right scan of the input
formula. G also takes polynomial time to build; the c-structure and f-structure anno-
tations are fixed. The lexicon, being only of size 4m can be built in time polynomial
in the length F. We can keep track of what variables we have already seen in a list
that we rescan at most a polynomial number of times. Thus the total time to con-
struct the LFG is polynomial in the size of F.

Finally, we show that F is satisfiable iff a ¢ L(G). Suppose that a ¢ L(G). We
must show that F is satisfiable. If a ¢ L(G), then by the c-structure rules for G, there
must be a derivation line of T and F preterminals that directly derives a. But this
means that each preterminal triple contains at least one 7, and assigning true to the
literal corresponding to this lexical item yields a satisfying assignment (each clause

6 Remember that m is the number of different propositional letters in the 3SAT problem instance.

J. van de Koot / Lingua 97 (1995) 37-80 51

contains at least one true literal). Functional coherence guarantees consistent
assignments.

Now suppose that F is satisfiable. Then at least one literal in each clause triple
must be true. We must exhibit a valid LFG derivation corresponding to this satisfy-
ing assignment. We choose the context-free expansion that expands out to the appro-
priate pattern of Ts and Fs; this can clearly be done. Then we select lexical entries
that correspond to a, from left to right, ensuring that we pick the proper entry
according to whether a lexical item is dominated by T or F. This is clearly a valid
sentence in G, because it guarantees functional coherence.[]

3.2.3. Interpretation of the complexity result for LFG

Barton et al. (p. 112) point out that “the LFG complexity result ... arises because
arbitrary lexical ambiguity coupled with arbitrary feature cooccurrence restrictions is
a computationally deadly combination”. They then discuss Williams (1984), who
has suggested that many of the problems associated with LFG’s f-structures arise
from its failure to observe X’-restrictions, and point out that his suggestion to import
X’-theory into the f-structure language would suffice to eliminate the offending
source of complexity. Williams has pointed out that the absence of a locality con-
straint on f-structures allows an LFG to express unnatural forms of feature agree-
ment. He mentions as an example that in LFG a verb could require the object of a
more deeply embedded verb to be plural. But if f-structures obeyed X’-theory, then
hierarchical unification of features would be blocked by maximal projections. Only
the features of the head of a phrase would be accessible for agreement rules.

The authors also point out a second way around the complexity result, which is to
rely on performance factors, such as locality principles for parsing, to salvage the
complexity of LFG parsing. In particular, they suggest that assuming an LR-type
parser’ would have the effect that in cases in which global lexical ambiguity arises,
the resulting sentences will be difficult or impossible to process.

It seems to me that Williams’s example above favours the former view. Parsing
limitations affect the normal behaviour of our language comprehension system, but
that does not mean that in general we cannot give grammaticality judgements for
sentences that are difficult to parse. Take the case of sentences with multiple centre-
embeddings: these are very difficult to parse, but with pen-and-paper a normal
speaker/hearer can determine whether they are grammatical or not. But there is no
question whether a language in which a verb requires the object of a more deeply
embedded verb to be plural is difficult to parse or not: it appears that languages with
such agreement processes do not exist. On the view that such languages do not exist
because they are difficult to parse, we would similarly expect centre-embedding to
be totally absent in natural languages, which it clearly is not.

A question that might be raised at this point is whether the proof tells us anything
at all about the parsability of the whole class of LFGs, given that it relies on the con-
struction of a particular LFG that bears no resemblance to an LFG for any natural

7 A deterministic parser with lookahead similar to Marcus’s (1980) Parsifal.

52 J. van de Koot / Lingua 97 (1995) 37-80

language. Or to put the same question in a slightly different form: does the particu-
lar LFG constructed for the proof go short for the whole class of LFG grammars?
There is a clear answer to this question. The proof does not demonstrate that there
are no efficiently parsable LFGs. Indeed, it is likely that most LFGs, including those
that generate known natural languages, are efficiently parsable. The point of the
proof is, however, that the LFG theory certainly does not guarantee efficient
parsability. If there are no natural languages that require a grammar with properties
similar to the ones exploited in the proof, then LFG makes that look like an accident.
As discussed above, this accident might then be attributed to performance factors or
may alternatively be taken to betray a lack of constraint in the linguistic theory (see
Fig. 1).

3SAT problem instance:
Is (x '\ x'3v x4) A qV XV "5) satisfiable?
Answer: Yes, with x 4= true

LFG problem instance:
Is x1x‘3x4x3x4x5 e L(G)
Answer: Yes, with the following derivation

X1 F
x3F
xqT
S | xgF
o ol
x3F x4T
x4 T| 8 (=) (1=1) 8 | xgF
F T T F T F
(I%l) (I%l) (l%l) (I%l) (141) (IJ'l-l)
Xq X3 X4 X3 X4 X5

(X (xgF) (XD (xg=H) xD) (xsh

Fig. 1. The reduction described in the text produces this LFG derivation on a sample 3SAT instance
(after Fig. 4.1 in Barton et al., 1987).

3.3. WG-recognition is NP-hard (van de Koot, 1992)

3.3.1. Word Grammar

Word Grammar (WG — Hudson, 1984, 1990) is a kind of dependency grammar:
the structure of a sentence is given by a set of dependencies, not by a constituent
structure. WG is essentially lexicalist in that the internal structure of a word can be
generalized to act as the basis for generating syntactic structures. An essential rela-

J. van de Koot / Lingua 97 (1995) 37-80 53

tion in the theory is that of feature inheritance. This relation holds between an
instance and the model of which it is an instance. For example, run is an instance of
the category verb and a verb is an instance of the category word. “Since every word
is an instance of some model and every word (or word-type) is, ultimately, an
instance of the category word, the relation of instantiation provides a hierarchy
which brings together every word in the language” (Hudson, 1984: 14). WG
imposes on top of this hierarchy a set of statements or generalizations. For instance,
one such generalization could apply to the word type verb and will be shared by any
instance of the model verb (by default inheritance). Furthermore, the grammar may
contain statements to the effect that a word in a given dependency configuration
inherits certain features. For instance, we might specify that a word inherits certain
features of a word that is dependent on it.

For the purpose of the proof that follows this is about all we need to know about
Word Grammar. The proof establishes the computational intractability of the recog-
nition problem for WG. It is very similar to the NP-hardness proof for LFG.

3.3.2. The proof

We want to show that WG recognition is NP-hard. Intuitively that this should be
the case is easy to see. WG has a feature-inheritance mechanism that is as power-
ful as the LFG agreement machinery. All we need to do is to find a way to create
a WG truth-satisfaction component that mimics the effect of the LFG c-structure
rules.

We begin by defining the WG recognition problem with respect to an input sen-
tence o and a WG G as follows:

The WG Recognition Problem is: given a sentence o and a WG G, is a € L(G)?
We then carry out the reduction.
Theorem: WG Recognition (WGR) is NP-hard.

Proof. The reduction is from 3SAT. Given a 3SAT instance F of length n using the
m variables x...x,,, reduce 3SAT, a known NP-complete problem to WGR in poly-
nomial time.

To construct the WGR problem, we map F into a sentence a to be tested for WG
membership. This involves erasing the parentheses and the Vv and A symbols in F.
We are left with just the string of literals.

Now we build the WG that we will use for the membership test. The grammar will
vary slightly with the problem instance (details follow). Finally, we add lexical
entries, one pair for each literal x; and x’. The lexicon varies with the particular
3SAT instance.

The WG must provide a method for reproducing the clause structure of 3SAT.
Since WG does not have CF base rules we cannot get away with the simple method
for LFG. Instead, we exploit WG’s default inheritance scheme and define the WG to
have three major category types: cat-1, cat-2 and cat-3, which are all a kind of word.

54 J. van de Koot | Lingua 97 (1995) 37-80

word
B
cat1 cat2 cat3
cat-1-p cat-1-n cat-2p cat-2-n cat-3-p cat-3-n

Fig. 2. The category hierarchy used in the proof.

cat-1 always selects cat-2, cat-2 always selects cat-3, and cat-3 always selects cat-1
or no complement at all.?

Next we take care of the truth-satisfaction component. In each clause (cat-1,cat-
2,cat-3) either cat-1 is true or it makes cat-2 promise to make the clause true. Simi-
larly, if cat-2 has promised cat-1 that it will make the clause true, then either cat-2
itself is true or it makes cat-3 promise to make the clause true. Clearly, if a category
is true, it must leave its complement free to be either true or false. To get this idea to
work, we define various subcategories for cat-1, cat-2 and cat-3. These subcategories
will encode what each category has been made to promise. For instance, a cat-2-p is
a category which has promised to make the clause true, while a cat-2-n is a category
that has promised nothing.

Inheritance of category membership
We will make use of a set of categories ordered in the following isa-hierarchy:

cat-1-t isa cat-1-p.
cat-1-f isa cat-1-p.
cat-1-p isa cat-1.
cat-1-n isa cat-1.

cat-2-t isa cat-2-p.
cat-2-f isa cat-2-p.
cat-2-p isa cat-2.
cat-2-n isa cat-2.

cat-3-t isa cat-3-p.
cat-3-f isa cat-3-p.
cat-3-p isa cat-3.
cat-3-n isa cat-3.

8 The idea for the strategy I use here was taken from Ristad’s (1991) NP-hardness proof for GB-recog-
nition. I discuss this proof in the following section.

J. van de Koot / Lingua 97 (1995) 37-80 55

cat-1 isa word.
cat-2 isa word.
cat-3 isa word.

Selection of complements

We now specify (in WG notation) that cat-1 and cat-2 (which correspond to the
first and the second disjunct in a 3SAT conjunct) take one and only one complement,
whereas cat-3 (which corresponds to the third disjunct in a 3SAT conjunct) takes one
complement (namely the first disjunct of the next conjunct) or no complement at all
(if it corresponds to the third disjunct in the last conjunct of the 3SAT formula).

cat-1 has [1-1] complement.
cat-2 has [1-1] complement.
cat-3 has [0-1] complement.

Next we organize the selection of complements in such a way that of every three
consecutive words in the WG sentence corresponding to the 3SAT formula at least
one word will come out true. For instance, we specify that the complement of a cat-
1-t (a word corresponding to a first disjunct which is true) is a category which
promises nothing (a cat-2-n), whereas the complement of a cat-1-f (a word corre-
sponding to a first disjunct which is false) is a cat-2-p (a category which promises
either to be true itself or to make its complement promise to be true). To give one
further example, the complement of a cat-2-f (a category corresponding to a second
disjunct which is itself false and also follows a false first disjunct) must be a cat-3-t
(a category corresponding to a true third disjunct). If a cat-3 has a complement, then
this complement must of course promise to make the next clause true.

type of object of cat-1-t = cat-2-n.
type of object of cat-1-f = cat-2-p.
type of object of cat-2-t = cat-3-n.
type of object of cat-2-f = cat-3-t.

type of object of cat-2-n = cat-3-n.
type of object of cat-3= cat-1-p.

Features and feature inheritance

WG allows a general statement of feature agreement, which is very similar to the
LFG f-structure notation (i=T). What we want is for a head to share all the features
of its complements:

feature of word = feature of complement of it.

In WG a word can only inherit a feature for which it is specified. This is to block
certain instances of feature inheritance. For the proof to work, we must ensure (i)
that each word can inherit any feature and (ii) that each x; is systematically associ-
ated with a feature f;.

56 J. van de Koot | Lingua 97 (1995) 37-80

We take care of (i) as follows
word has f;
word has f,

We take care of (ii) in the lexicon. For every x; we add the following four entries,
where the operator ‘slash-colon’ denotes disjunction:

Lexicon

X; isa {/: cat-t, cat-n}. x’, isa {/: cat-f, cat-n}.
f; of x; = true. f: of X’; = true.

x; isa {/: cat-f, cat-n}. X’ isa {/: cat-t, cat-n}.
f; of x; = false. fi of X', = false.

The first entry for x; specifies that it is of category caz-t or of category cat-n and that
it carries the feature f; with the value true. The second entry for x; specifies that it is
of category cat-f or of category cat-n and that it carries the feature f; with the value
false. It follows that if x; is of category cat-n it can be either true or false as
required. The other two entries take care of the complementary case x’. Thus these
four lexical entries capture all the ambiguities associated with an x;.

The whole construction takes time polynomial in the size of F. The mapping of
F to a string a for WG recognition can be done in one pass through F. G also
takes polynomial time to build. The specification of category types is fixed
across problem instances. The number of features is linear in the number of vari-
able names. The lexicon can be constructed in time polynomial in the length of
F, because its size is proportional to 4m. We can keep track of the variables that
we have already seen in a list that we rescan at most a polynomial number of
times. Thus the total time to output the corresponding WG is polynomial in the
size of F.

We must now show that F is satisfiable iff o € L(G). Suppose that a € L(G). We
must show that F is satisfiable. If a € L(G), then by the rules for category member-
ship and selection there must be a derivation of a string of true and false words such
that of each triple of words at least one word is true. This means that assigning the
value true to the literal corresponding to this lexical item yields a satisfying assign-
ment (each clause contains at least one true literal). WG agreement guarantees con-
sistent assignments.

Now suppose that F is satisfiable. Then at least one literal in each clause must be
true. We must exhibit a valid WG derivation corresponding to this satisfying assign-
ment. We simply choose the pattern of selectional dependencies that results in the
appropriate pattern of true and false words. This clearly can be done. Then, working
from left to right we select words corresponding to those in o, the mapping of F,
making sure to pick the proper entry depending on whether the item has to be true or
false. This is clearly a valid sentence in G, because it satisfies the WG-derivation and

J. van de Koot / Lingua 97 (1995) 37-80 57

because consistency of variable feature values guarantees satisfaction of WG agree-
ment. This completes the proof.L]

3.3.3. Interpretation of the complexity result for WG

The sources of complexity in LFG and WG are basically identical and the com-
ments in section 3.2.3 apply here as well. Both in the case of LFG and in the case of
WG we saw that the combination of lexical ambiguity and arbitrary feature cooccur-
rence restrictions has a severe computational impact. In WG unrestricted hierarchi-
cal feature inheritance takes the place of unrestricted hierarchical feature unification.
But while in the case of LFG there is a natural candidate for a locality condition on
f-structures (namely X’-theory), it is not so easy to see how feature inheritance in
WG can be suitably restricted. After all, there are no phrases in WG, just head-head
relations. It is therefore impossible to import something like X’-theory into WG.
(See Fig. 3.)

3SAT problem instance:
Is (x v x‘3v x4) A gV X4V x5) satisfiable?

Answer: Yes, with x 4~ true
3SAT problem instance:
Is (x v x'3v x4) Ax 3V XV "5) satisfiable?

Answer: Yes, with x 4= true

WG problem instance:
Is x1x':,‘)(4)(3x4x5 e L(G)

Answer: Yes, with the following derivation

fa=F f3=F fa=F fa=F

=T| | f4=T| |f=T| |G=T| [f=T

fs=F| |f5=F| |fs=F| |fg=F| |fs=F| |[fg=F]
R Y VR Y YR

cat-1f cat24 cat-3n cat1-f cat2t cat-3-n

N

X X3 X4 X3 X4 Xg
(f1=1=) (f=F) =D f3=F) (=D (=)

Fig. 3. The reduction produces this derivation on a sample 3SAT instance.

3.4. The complexity of the Barriers and Lasnik—Saito models (Ristad, 1991)

Ristad (1991) presents an NP-hardness proof for the URP for a class of transfor-
mational grammars that permit a particular construction, known as a ‘stair’. He
argues that the version of GB known as the Barriers model of grammar (Chomsky,

58 J. van de Koot | Lingua 97 (1995) 37-80

1986) permits a stair and that therefore its associated URP is NP-hard. The same is
then claimed to be the case for the Lasnik—Saito model of grammar (Lasnik and
Saito, 1984). I first recapitulate these proofs, using substantial excerpts from Ristad
(1991). I then argue that the proof that the URP is NP-hard for models that permit a
stair is flawed. I also show that the linguistic model to which it applies is not a cor-
rect representation of either Lasnik and Saito (1984) or Chomsky (1986), since nei-
ther of these models in fact permits a stair. I conclude that Ristad (1991) has not
demonstrated that the URP is computationally intractable for these models. Finally I
discuss the implications of this result.

3.4.1. The stair construction

The proof that we are about to review is based on the idea that the components
required to solve 3SAT can be realized in a transformational model in the form of a
construction called a stair. Each stair will be used to represent one propositional let-
ter of a 3SAT instance. Three stairs will be needed to represent one clause. A stair is
a recursive structure: a stair selects another stair. Within a group of three stairs a
chain of selectional dependencies will guarantee that one of the three stairs is
assigned the value true in virtually the same way in which this was done in the WG
proof. So, as was the case there, selection and agreement are correlated. But whereas
feature passing methods were used to ensure consistency of truth assignment in the
case of LFG and WG, movement and specifier-head agreement perform this function
in the transformational theory. Thus, every stair representing some x; will have avail-
able a specifier into which another stair representing an x; can be moved to check,
under specifier-head agreement, that the truth values represented in the two stairs are
identical. Because consistency of truth value assignment must be checked for all
stairs, every stair must somehow be forced to move to a position of specifier-head
agreement. In other words, a stair must have the property that it moves obligatorily.
This can be achieved by setting things up in such a way that a stair 0-marks but does
not case-mark the stair it selects. Of course it must be guaranteed that the movement
of a stair is also permitted and since one stair must be able to move out of another,
a stair should be transparent for extraction. A stair is therefore defined as follows:

Definition. A stair is an underlying form U; with the following structure:

1. Recursive structure. U; contains another stair U,_,.

2. Selection and agreement are correlated. U; contains a morpheme y; that selects
U,,,. Local affixation rules will morphologically merge the head of U; with the
morpheme y,, thereby correlating selectional properties of u,; with the agreement
features of U, in the lexicon.

3. Undergoes obligatory movement. U, selects and assigns a 0-role to U,,;, but does
not assign it case. Therefore, U,,; is a properly governed argument that undergoes
obligatory movement in order to satisfy the case filter. (The same will be true for
U.)

4. Transparent to extraction. U, allows nodes that can be moved out of U,,, to also
be moved out of U,.

J. van de Koot / Lingua 97 (1995) 37-80 59

5. Contains a landing site. U, contains a specifier position that is assigned case. The
head of U; will agree with its specifier; therefore only stairs that agree with the
head of U; can be moved to this specifier position.

The next step is to show that stairs can enforce the 3SAT constraints.
Lemma. Stairs can enforce the 3SAT constraints.

Proof. The idea of this subproof is to represent negation as a morpheme (recall that
one of the 3SAT constraints is that x; and its negation x have opposite truth values)
and to encode the truth value of variables in syntactic features. Clausal satisfaction
will then be enforced at DS by means of an appropriate chain of selectional depen-
dencies and consistency of truth assignments will be enforced at SS through forced
movement to positions of spec-head agreement, as just discussed.

The DS consists of one stair per literal. Thus, each clause

C,-=(a,- A bi \Y Ci)

will be represented by the three stairs U;,, U,;, U, (see Fig. 4). The selectional con-
straints of the three stairs will ensure that at least one of them is true, although (as
before) lexical ambiguity will prevent us from knowing which. This can be done as
follows. U;, must promise to make C; true, either by being itself true or by forcing
U, to promise to make C; true. To fulfill its promise, U, , must either be true or select
a true stair U, .. Affixes in the lexicon will negate or preserve variable truth values,
according to whether the corresponding formula literal is negative or positive.

le]

p.c

le]

le]

Fig. 4. A 3-stair.

60 J. van de Koot | Lingua 97 (1995) 37-80

Then, looking at the tree from right to left, each stair is moved to the specifier
position of the closest stair of the same variable. Recall that each stair has the prop-
erty that it moves obligatorily. As a result, at SS, the specifier position of the stair
that corresponds to the ith occurrence of a given variable contains the stair that cor-
responds to the i +1th occurrence of the same variable. These two stairs agree with
each other by specifier-head agreement (recall that each stair has the property that it
has a landing site which is a specifier that agrees with its head). In fact, at SS, all the
stairs that correspond to literals of a given variable end up being contained in the
specifier position of the stair that corresponds to the first occurrence of that variable.
Consequently, all the stairs that correspond to literals of a given variable agree with
each other by spec-head agreement at this level, as required in order to enforce con-
sistent truth assignments. All clauses contain a true literal by DS-selection. Negation
is performed by affixes. The formula is satisfiable iff the corresponding DS and SS
are well-formed.[]

As in the case of the proofs for LFG and WG that their associated URP is NP-
hard, the proof that the URP for models that permit a stair is NP-hard is based on the
complexity of a particular subproblem with respect to such a model. This subprob-
lem is the same as it was in the LFG and WG proofs: given a partial syntactic rep-
resentation R that yields a string of ambiguous or underspecified words, and a lexi-
con L containing ambiguous words, can the words in R be found in the lexicon L?
Ristad refers to this subproblem as the lexical resolution problem (LRP) and he
proves that the LRP is NP-hard for a model that permits a stair. But of course if a
subproblem of a problem is NP-hard, then it follows that the overall problem is NP-
hard. Therefore, a proof that the LRP for a model is NP-hard implies that the URP
for that model is NP-hard as well.

Now using the stair construction and the fact that words may be ambiguous, Ris-
tad proves the following theorem about the lexical resolution problem:

Theorem. The LRP is NP-hard in models that permit a stair.

Proof. By reduction to 3SAT. The input is a 3SAT formula f; the output is a lexi-
con L and a structure S containing underspecified words such that the words in §
can be found in L if and only if f is satisfiable. The structure S will be built from f
according to the stair construction discussed above. Two stairs will agree if and
only if they correspond to literals of the same variable and have been assigned the
same truth value. The words in the syntactic structure will be ambiguous only in
the syntactic distinction that corresponds to truth value. One agreement feature
encodes variable truth assignments, and another identifies Boolean variables. One
non-agreement feature encodes literal truth values, and a second one keeps track of
the promise in the chain of selectional dependencies. The stair construction ensures
that the 3SAT constraints are satisfied by all permissible lexical choices for the
words. [

The details of this proof, which are quite complex, can be found in Ristad (1988)
and are reproduced verbatim in the Appendix. (See Figs. 5, 6, and 7.)

J. van de Koot | Lingua 97 (1995) 37-80 61

lel

Fig. 5. On the input 3SAT instance f=(x).X'5,X3), (X'5,%2,X3), the DS in the figure is created to represent f.
Each literal in f is represented by a stair construction. For.example, the first literal of the first clause, x),
is represented by the outermost stair construction, U, ,. Selectional constraints are enforced at DS. They
ensure that every Boolean clause contains a true literal.

Finally, Ristad shows that Barriers allows a stair.
Lemma. Barriers allows a stair.
In Fig. 8:

(a) V moves to I to N to correlate selection of NP;,, and agreement features on I and
N; movement is obligatory if I and N are affixes;

62 J. van de Koot | Lingua 97 (1995) 37-80

U1,a
A

Uis

fe]

Ye
fe] U2, b
A
fe t2,c

Fig. 6. This figure depicts the first movement transformation that is applied in the mapping of the DS in
Fig. 5 to the SS in Fig. 7. The innermost stair (U, ., representing the last literal in f) moves to the speci-
fier position of the third stair (U,), leaving behind a trace ¢, .. This movement transformation relates the
x3 literal of the second Boolean clause to the x; of the first Boolean clause. Now both stairs agree, by
specifier-head agreement; therefore, the corresponding literals of the formula variable x; will be assigned
the same truth value, even though they appear in different clauses.

(b) I/V assigns case to its spec;

(c) movement of NP, is obligatory because V assigns it a 6-role but no case;

(d) NP, is transparent to extraction; NP;,, can adjoin to VP and void its barrierhood
because non-arguments may be freely adjoined to. From there it can raise fur-
ther. The adjoined trace may be deleted after it has done its y-marking duty, thus
avoiding a Principle C violation.

(e) The internal IP; contains a spec which acts as a landing site. The NP that moves
into this spec will agree with I°, the head of IP.

Theorem. The LRP is NP-hard in the Barriers model.

J. van de Koot / Lingua 97 (1995) 37-80 63

U1,a

Fig. 7. This figure shows the SS that results from repeatedly applying movement transformations to the
DS depicted in Fig. 6. Specifier-head agreement is enforced at SS. It ensures that all instances of a vari-
able are assigned the same truth value.

Proof. The proof follows from the lemma that Barriers allows a stair and the theo-
rem that the LRP is NP-hard in models that permit a stair. The lexicon contains
ambiguous inflected nouns ‘[[V I] N]’ that have undergone verbal incorporation.[]

Theorem. The LRP is NP-hard in the Lasnik—Saito model.

Proof. The proof proceeds without alteration in the Lasnik—Saito (1984) model
because in that model, theta-government suffices for proper government, and traces
may be deleted after y-marking.[']

In the following two sections I discuss two problems with the proofs that the LRP
is NP-hard in the Barriers and Lasnik—Saito models.

3.4.2. Problem I: Stairs cannot enforce all 3SAT constraints

Although this is not immediately clear from the presentation in Ristad (1991),
there is in fact a Case-theoretic problem with deriving the lemma that stairs can
enforce the 3SAT constraints. If the lemma cannot be derived, then the proof that the
LRP is NP-hard in models that permit a stair fails and consequently the NP-hardness
proofs for the Barriers and Lasnik—Saito models fail as well.

64 J. van de Koot | Lingua 97 (1995) 37-80

N
/\
e N'
/\
N P
/\
e I'
/\
| VP
/\
\") NP

i+1
Fig. 8. A Barriers stair.

The lemma fails to be derived for the following reasons. It would seem that a stair-
based representation for a 3SAT-instance containing two or more distinct proposi-
tional letters must violate the Case Filter. Suppose the original 3SAT problem
instance has just 3 different propositional letters. The way any stair in the proof
receives Case is by moving into a spec (recall that this is what forces movement in
the first place). As movement is obligatory, we must guarantee that there is a case-
marked landing-site for every U,. Suppose our 3 propositional letters are x, y and z
respectively. Suppose that some x was the leftmost propositional letter in the for-
mula. Then the stair corresponding to that propositional letter will be the outermost
stair and will therefore not require Case.® But what about the ‘highest’ instances of
stairs for y and z? These will have their specs filled with stairs that moved into them
to get case. But where do these ‘highest’ stairs which are not outermost move to
themselves? The answer is that they have nowhere to go. Therefore these ‘highest’
non-outermost stairs must receive Case in-situ.

To illustrate this point, consider again Fig. 7. In the SS depicted in this figure nei-
ther U, , nor U, receives Case, because neither has moved to a position in which
Case is assigned. The DS positions these stairs occupy are Caseless (by the defini-
tion of a stair). Therefore, the structure should be ruled out by the Case Filter.

In the more detailed version of the proof in Ristad (1988) the problem noted here
is avoided by assuming that

“[t]he leftmost literal of each formula variable is assigned case in situ by the formula literal that selects
it; all other literals of the variable receive a theta role but no case, which is what forces them to move.”
(Ristad, 1988: 25)

Ristad does not present the details of how this would work. I think it can be argued
that in fact it cannot work. It is clear what Ristad’s proposal requires: we must add
to the lexicon L for each lexical item x; that does not assign Case another lexical item
that is exactly like x; except that it does assign Case. This raises the question how we
avoid that the Case-assigning variant is inserted in a position where it selects a literal

® On the not unreasonable assumption that the root node does not have to satisfy the Case Filter.

J. van de Koot / Lingua 97 (1995) 37-80 65

that is not leftmost. If this question cannot be answered, and I do not see how it
could be, then considerations of Case will fail to force movement in a stair-based
representation. But if movement cannot be forced, then the stair construction fails to
enforce one of the 3SAT constraints, namely coherent truth assignments, and the
proof that the LRP is NP-hard in models that permit a stair does not go through.

We now expect that there will be 3SAT instances which are not satisfiable but
which do have a well-formed DS and SS in the Barriers and Lasnik—Saito models.
As an example, consider (3):

Bavava) A@vaVva)

This 3SAT instance is not satisfiable: if a is true then the right conjunct is false, if
a is false then the left conjunct is false. But in the corresponding stair-based DS and
SS in the Barriers and Lasnik—Saito models, the stairs corresponding to a and a’
could all be true. This is because we could select the lexical items in the DS in such
a way that all stairs receive Case in-situ and that consequently specifier-head agree-
ment is not violated at SS.

3.4.3. Problem 2: Neither the Barriers nor the Lasnik—Saito model allows a stair

The proofs that the LRP is NP-hard in the Barriers and Lasnik—Saito models is
based on a second lemma, namely that these models allow a stair. It can easily be
shown that this lemma fails to be derived, because it is based on the incorrect
assumption that long distance A-movement is allowed in these models. If long A-
movement can be shown to be impossible, then there will be stairs which are unable
to move to a Case-marked position without violating a locality constraint. This is
easy to see: two occurrences of the same variable in a 3SAT instance may be sepa-
rated by an arbitrary number of other propositional variables. In the DS correspond-
ing to the 3SAT instance, the two stairs corresponding to the two occurrences of the
same variable may therefore be separated by an arbitrary number of intervening
stairs.

Ristad’s assumption that long A-movement is possible is based on the following
reasoning:

“In the Barriers stair construction, an argument undergoes long movement by adjoining the argument NP
to VP, y-marking its trace, and then deleting the intermediate A’-trace at LF.

This is the exact derivational sequence (adjoin, y-mark, delete adjoined trace) used in Barriers (pp.
21-22) to move a wh-subject from a theta-marked CP complement to a specifier of CP, provided the wh-
phrase is licensed at LF. Barriers attempts to exclude similar long movement of an NP from a similar
(but caseless) subject position by appeal to Binding Condition C at S-structure: the NP-trace in subject
position would be an A’-bound R-expression A-bound in the domain of its head (p. 93, fn. 20)

Crucially, condition C will exclude long movement of NPs only if trace deletion is restricted to LF.
Otherwise adjoined traces could be deleted before causing an S-structure binding violation. But trace
deletion cannot be restricted solely to LF. If it were, then any ECP violation created by LF-movement
may be avoided, simply by deleting offending intermediate traces after they have done their y-marking
duty. This can be done because adjoined A’-traces are not required by the extended projection principle
at LF. This is why neither Barriers nor Lasnik—Saito in fact restrict trace-deletion to LF. Therefore, long
movement of an NP is not excluded in these models.” (Ristad, 1991: 60)

66 J. van de Koot | Lingua 97 (1995) 37-80

While this is of no importance for my objections, it is a mystery to me how
restricting trace deletion to LF could have the consequence that “any ECP violation
created by LF-movement may be avoided, simply by deleting offending intermediate
traces after they have done their y-marking duty”. Despite this we can grant the con-
clusion that trace deletion is not restricted to LF in the Barriers and Lasnik—Saito
models, as Lasnik and Saito (1984) make this fully explicit. This is because they
assume that affect-a operates in both the syntactic component and the LF compo-
nent. Cf. (4) below (Lasnik and Saito’s (180)):

(4) Syntactic component
D-structure
Affect a: (a) optionally move anything anywhere, subject to Subjacency, creat-
ing a trace or not; (b) optionally delete or insert anything lacking semantic con-
tent (e.g. of, that, it, t).
Index Comp.
Assign [+7] to any properly governed argument.
Obligatorily assign [—y] to any argument that is not properly governed.
S-structure: Filters

LF component

Affect a (identical to syntactic operation, except not subject to Subjacency).
Index Comp.

Assign [+7] to any properly governed category.

Obligatorily assign [—y] to any category that is not properly governed.

LF: Filters, including * [... 7 ...]

[-7]

What Ristad fails to take into account, however, is that both in the syntactic compo-
nent and in the LF component Affect a and y-marking are assumed to be ordered
with respect to each other: “y-assignment follows Affect o in each component”
(Lasnik and Saito, op. cit.: 285). It is also clear from Lasnik and Saito’s presentation
that these operation apply in the mapping to S-structure and in the mapping to LF,
so that the filters at the level of S-structure follow Affect o and y-assignment in the
S-structure component and the filters at the level of LF follow Affect o and y-assign-
ment in the LF component. It follows that illicit movement can be ruled out in such
a model by appeal to Principle C at S-structure. Consider (5), in which irrelevant
structure has been omitted:

(5) John seems that it is [vp t" [vp considered [t to be intelligent]

There are two possibilities to consider.
Suppose Affect o does not delete ¢’ in the S-structure component. Then ¢ will be
antecedent governed and marked [+y] in the S-structure component. Since ¢ can be

J. van de Koot / Lingua 97 (1995) 37-80 67

deleted in the LF component, (5) will not violate the ECP at LF. But because ¢’ can-
not be deleted before LF, (5) will violate Condition C at S-structure.!?

Suppose Affect o deletes ¢”in the S-structure component (or, alternatively, sup-
pose Affect a does not leave the trace ¢”in the S-structure component). Then ¢ will
not be antecedent governed and will therefore be marked [-y] in the S-structure
component. If ¢ is deleted in the mapping to LF, then the Projection Principle is vio-
lated. If ¢ is not deleted in the mapping to LF, (5) will violate the ECP at LF.!!

Long A-movement is blocked for exactly the same reasons in the Barriers theory,
since this model incorporates the Lasnik and Saito y-marking and y-checking mech-
anisms:

“For concreteness, let us assume further the mechanism proposed by Lasnik and Saito (1984) for deter-
mining satisfaction of the ECP. We say that a assigns the feature [+y] to § if it properly governs B and
that f receives the feature [~y] if it is not properly governed, where y-marking, once assigned, is per-
manent. y-marking takes place at S-structure for elements of chains terminating in A-positions and at LF
for elements of chains terminating in A’-positions, perhaps as a consequence of the Projection Principle
in some manner. To satisfy the ECP, a nonpronominal empty category must have the marking [+y] at
LF.” (Chomsky, 1986: 17-18)

Finally, consider Ristad’s claim that

“even if trace deletion were disallowed entirely, long movement would still be possible from theta-
marked noun complements, and the proof of lemma 3.3.1 [Barriers allows a stair —~ jvdk] would proceed,
because 8-government cannot be eliminated without negative consequences in the rest of the theory.”
(Ristad, 1991: 61)

I will not go into the arguments that Ristad advances for the view that 6-govern-
ment cannot be eliminated without negative consequences. Instead, I note that NP-
movement will still be subject to a somewhat less stringent locality condition,
namely Subjacency. It is therefore not the case that Ristad’s modified theory (in
which 8-government suffices for the ECP) allows NP-movement over arbitrary dis-
tances, as would be required to save the lemma.

3.4.4. Conclusions: Agreement and locality

I have shown that the proof that the LRP is NP-hard for models that allow a stair
fails because of a problem with the lemma that stairs can enforce the 3SAT con-
straints. But even if this lemma could be derived, the proofs that the LRP is NP-hard
in the Barriers and Lasnik-Saito models would still fail. This is because the locality
conditions in these models conspire with Principle C to disallow a stair.

10 This is because the foot of the chain [John, ¢/, f] is an A’-bound R-expression that is A-bound in the
domain of the head of its chain.

' Note that a derivation in which John is raised without leaving ¢’ cannot be salvaged in the LF
component by lowering John to the VP-adjoined position and then raising it back again, this time leav-
ing ¢”. This derivation, although possible, cannot undo the [—y] feature assigned to ¢ in the S-structure
component.

68 J. van de Koot / Lingua 97 (1995) 37-80

Remember that in the LFG and the WG proofs we made crucial use of fairly unre-
stricted methods for enforcing non-local agreement. As we discussed in connection
with LFG, such agreement machinery appears to be too powerful in that it allows
non-natural languages. In the Barriers and Lasnik—Saito models the various con-
straints on movement conspire in just the right way to rule out unrestricted non-local
agreement.

This is of course not to say that no NP-hardness proof could be found for the Bar-
riers or Lasnik—Saito model, or even that one should be concerned if one was found.
As we will see in section 4, there is every reason to expect that certain components
of an empirically adequate linguistic theory will give rise to computational
intractability. But the worst-case languages ruled out by the Barriers and
Lasnik—Saito models are non-natural languages and it is therefore a welcome result
that the attempted NP-hardness proof considered here fails.

4. The language complexity game (Ristad, 1993)
4.1. Introduction

The main result of Ristad’s monograph is a complexity thesis which states that
language computations are NP-complete. This thesis therefore sets tight upper and
lower bounds on the complexity of human language. Recall that a problem is NP-
complete if it is NP-hard and it can furthermore be shown that the problem can be
solved by a nondeterministic TM in polynomial time. Such problems have the
important property that they are difficult to solve but that their solutions are easy to
verify.

Ristad’s monograph is important for a number of reasons, not all of which will be
given equal attention here. While the complexity thesis is a major result in itself, the
true value of the research lies in the novel characterization of human language on
which it is based and in the linguistic insights that can be obtained from the method-
ology that guides it. In the following sections I briefly sketch Ristad’s model of the
language user, the methodology on which the defence of his complexity thesis is
based, the defence of the thesis itself and finally what contributions to linguistics his
work has made.

4.2. The object of study: Direct complexity analysis

Ristad (1991, 1993) argues that since the linguistic theory is not a model of the
language user at any level of abstraction (because it is a model of linguistic knowl-
edge and not of how that knowledge is put to use), looking at the recognition prob-
lems associated with linguistic theories is still rather a roundabout way of finding out
about the complexity of language computations. It would be better to study the com-
plexity of language computations directly, without reference to the peculiarities of
particular linguistic theories at all. Following Ristad we will refer to this kind of
study as direct complexity analysis.

J. van de Koot / Lingua 97 (1995) 37-80 69

An immediate problem that arises for this approach is that we know very little, if
anything, about the computations performed by language users. How can we study
the complexity of language computations if we do not know what they look like? As
Ristad (1993) points out, computations may be characterized at various levels of
abstraction. Language computations, for instance, may be described as sequences of
brain state transitions, or as an algorithm which specifies how each state is mapped
into its successor state by a given computational device, or very abstractly as a com-
putational problem. A computational problem only specifies the relation between the
inputs and outputs of a computation, abstracting away completely from how a com-
putational device computes that mapping. At which level we can pitch our descrip-
tion of a given computation depends on the empirical evidence available. So little is
known about language computations that we have no choice but to characterize them
as computational problems. But how do we characterize language computations as
computational problems? »

Ristad proposes an interpretation of language according to which language acqui-
sition, comprehension and production are all instances of a unitary computation.
This computation maps some extralinguistic information i and a set of possible lin-
guistic representations M into a linguistic representation » and a revised set of possi-
ble linguistic structures M".!? The extralinguistic information includes not just ‘sen-
sations’ but also “intentions ..., beliefs, models of agents (other agents as well as
oneself), mental lexicon, conceptual system, and so forth” (p. 9). The sets M and M~
(also known as ‘models’) are a subset of 9, the set containing all humanly possible
sets of linguistic representations. On this view there is no principled distinction
between comprehension and production: both are a computation from extralinguistic
information to a linguistic representation of that information.

In order to make further investigation possible, it is necessary to decompose each
model M into a set of disjoint ‘submodels’. A submodel represents a natural class of
linguistic knowledge, such as knowledge about referential dependencies. Crucially, a
representation in a submodel does not just represent knowledge about some extralin-
guistic information. This is not difficult to see: in order to represent knowledge
about e.g. referential dependencies, we also need some linguistic information, such
as what phrase structure is assigned to the extralinguistic input by other submodels.
The results of the investigation will therefore be theory-neutral to the extent that the
linguistic input to the computational problem under study is theory-neutral.

Ristad’s characterization of language differs radically from Chomsky’s I-lan-
guage. Consider language user U with language computation f;;, whose knowledge
of language is characterized by the I-language /. [is a generative procedure: it enu-
merates the set of complete structural descriptions. As such it provides only a partial
characterization of the set M, the set of all possible representations computed by f;,
which includes incomplete representations for incomplete or insufficient extralin-
guistic evidence. But the input to the generative procedure / and the computation f,

12 Thus, the unitary language computation is a function f{(i,M) = {r, M"), where M = M’ if no acquisi-
tion takes place.

70 J. van de Koot / Lingua 97 (1995) 37-80

performed by language user U are also different. The input to / is an underlying
form, for instance an array of items taken from the lexicon, whereas the input to the
computation fy; is the extralinguistic evidence supplied by other cognitive systems.

The interpretation of language according to which language comprehension and
production are instances of the same unitary computation from extralinguistic infor-
mation to a linguistic representation of that extralinguistic information has a very
important consequence:

“... if the producer and comprehender have roughly the same extralinguistic information as input, they
will output the same linguistic representation using the same computational resources of time and
space. This suggests that language computations cannot be too complex. However, it is not always the
case that the producer and comprehender have roughly the same extralinguistic information as input. In
some cases, such as when their mental lexicons or conceptual systems differ significantly, their inputs
will be so different that it is impossible in principle for them to output the same linguistic representa-
tion. In other cases, such as when the comprehender’s sensory information is impoverished, their inputs
will be sufficiently similar that it is possible in principle for them to output the same linguistic repre-
sentation, although comprehension will require significantly more computational resources than pro-
duction did. In short, our interpretation suggests that language can be complex, but not too complex.”
(Ristad, 1993: 14)

But of course this is a near perfect characterization of an NP-complete problem.
Such a problem is difficult, but not too difficult: a candidate solution is easily veri-
fied to be correct. The point of Ristad’s interpretation of language is that if the com-
prehender’s extralinguistic information is (nearly) identical to that of the producer,
then since the producer was able to efficiently compute the intended linguistic rep-
resentation, the comprehender should be able to do so too. Ristad points out that this
view of language therefore places a heavy burden on a cooperative interaction
between speakers and hearers. Without this cooperation the intractability inherent in
the NP-complete natural language computation would make communication very
difficult quite quickly.'®

4.3. The method of study: The language complexity game

The methodology on which Ristad’s results are based is designed to guarantee the
accuracy of the complexity results. It is at once simple, effective and entertaining.
Two players, known as the maximizer and the minimizer, play a number of rounds
of an adversarial game, called the language complexity game. The maximizer will
try to demonstrate that natural language computations are more difficult than was
previously thought, whereas the minimizer will try to convince us that the opposite
is the case and that natural language computations are less complex than we previ-
ously believed. The maximizer’s attitude to the game is likely to lead to the discov-
ery of complex properties of language which had previously gone unnoticed, thereby

13 It seems to me that this view of communication meshes nicely with a theory of utterance interpreta-

tion of the type proposed by Grice (1975). For a reinterpretation of Grice’s ideas in a cognitive setting,
see Sperber and Wilson (1986).

J. van de Koot | Lingua 97 (1995) 37-80 71

making sure that our language models are not too simple. By contrast, the minimiz-
er’s attitude to the game will be to identify unnecessary complexity in our language
models, thereby making sure that they are not more complex than can be empirically
motivated. A game is initiated by one of the players proposing a plausible submodel
of linguistic knowledge. The game ends if neither player is able to make a further
contribution to our understanding of natural language that affects our views con-
cerning its computational complexity, with the last player to make a successful move
the winner of the game. Each player will be highly motivated to put forward an opti-
mally accurate submodel, in the hope that his current move will end the game.

The maximizer and the minimizer will typically make rather different contribu-
tions to our knowledge of language. It is the maximizer’s business to prove a lower
bound on the complexity of language computations (i.e. that some language problem
L is at least as difficult as problem X, where problem X is of known complexity). As
we have seen in section 3, this involves carrying out a reduction from the problem of
known complexity X to the new problem L. Since a reduction is based on some
structural similarity between the old and the new problem, the reduction is likely to
advance our understanding of the language problem L. By contrast, the minimizer
wants to prove an upper bound on the complexity of the language problem L (i.e.
that L is at most so difficult). Such a proof requires the minimizer to literally exhibit
an algorithm that solves L. If the minimizer’s move is in response to a move by the
maximizer, then a natural first step for the minimizer is to carefully consider the
sources of complexity the maximizer has uncovered in an attempt to exhibit addi-
tional empirical evidence that will falsify each source of complexity. This may then
lead to the construction of a less complex submodel.

4.4. The complexity of language computations

Ristad’s monograph brings together five rounds of the complexity game, with the
author taking turns as the maximizer and the minimizer. All five rounds investigate
the complexity of a submodel for anaphoric agreement. The linguistic problem of
choice is the Anaphora Problem. The formulation of this problem is based on the
observation that anaphoric elements (e.g. pronouns, reflexives and reciprocals) are
dependent on other linguistic elements for their reference. Anaphoric elements must
have antecedents. Therefore, these elements pose a computational problem, namely
to determine a unique antecedent for each anaphoric element in a given linguistic
representation. The output of the Anaphora Problem has the useful property that it is
independent of other cognitive systems. In particular, the Anaphora problem is logi-
cally independent of the problem of assigning a referent to referring expressions.
What is the input to the Anaphora problem? First of all, the input to the problem
must include a set of available antecedents. This set will consist of the available
antecedents in the current utterance and in the preceding utterances. But of course
there is other linguistic information that is relevant to the Anaphora Problem, such as
the linguistic features carried by elements involved in anaphoric relations and the
structural configuration in which such elements appear. Ristad states what he calls
the ‘broad’ Anaphora Problem as follows:

72 J. van de Koot | Lingua 97 (1995) 37-80

(6) Anaphora problem
Given a linguistic representation R lacking only relations of referential depen-
dency, and a set A€ of available antecedents, output an antecedent in A¢ for every
anaphoric element in R.

This statement of the problem abstracts away from the fact that more than one set of
linkings may be consistent with the set A€ in R, although only one of these will be
salient to the language user. Ristad shows, however, that the simple Anaphora prob-
lem reduces to a more refined version which takes account of salience. It follows
that complexity bounds on the simple problem carry over to the more refined prob-
lem, so that the complexity game may safely be based on the simple version of the
Anaphora Problem in (6).

The first move in the game is played by the maximizer, who puts forward a pre-
cise model of a widely accepted constraint on anaphoric agreement, the standard
agreement condition (SAC). The SAC captures the fact that anaphoric elements must
agree in certain inflectional features with their antecedents. According to this condi-
tion, an anaphoric element agrees with its antecedent only if they do not disagree on
the value of any inflectional feature. The maximizer has a field day and proves with-
out any difficulty that the Anaphora Problem is NP-hard under this model of
anaphoric agreement.

It then is the minimizer’s turn to look for weaknesses in the submodel proposed
by the maximizer. It does not take this player much trouble to find some clear
counterexamples to the SAC and he proposes an improved model of anaphoric
agreement, based on an alternative agreement condition called the Anaphoric
Uniqueness Condition (AUC), according to which the Anaphora Problem is con-
tained in P. In other words, the Anaphora Problem has an efficient solution under
this model.

At this point the maximizer decides to extend the scope of the anaphora complex-
ity game and to consider also the interpretation of anaphora in elliptical construc-
tions. In particular, he draws attention to the fact that the pronoun in the ellipsed part
of sentences such as Max hates his neighbours and so does Sam has a strict and a
sloppy reading. In order to be able to consider the complexity of the Anaphora Prob-
lem when such facts are taken into account, the maximizer must propose a model of
ellipsis. Taking the copy-theory of ellipsis as his starting point, the maximizer is able
to prove that the Anaphora Problem is PSPACE-hard under this model.

Undeterred by this onslaught, the minimizer puts his finger on two weaknesses in
the copy-theory. He points out that this theory predicts that the original VP and its
copy in a VP-ellipsis construction should be subject to the same post-copying con-
straints, although operations applied after copying should be able to apply to the
original and the copy independently. The minimizer shows that neither of these pre-
dictions holds and proposes an alternative model of ellipsis based on function-shar-
ing. This model is based on the observation that the overt and null VPs of a VP-ellip-
sis construction are, in some sense, the same predicate. The minimizer then shows
that the Anaphora Problem is contained in NP according to the function-sharing
model by exhibiting an NP algorithm. The maximizer gives up. The outcome of this

J. van de Koot / Lingua 97 (1995) 37-80 73

game therefore strengthens the thesis that the unitary natural language computation
is NP-complete.

4.5. Contributions of Ristad’s work to the field of linguistics

The characterization of human language put forward by Ristad is a necessary first
step in the investigation of the computational properties of human language and
therefore an important contribution to the field as a whole.

The proposed research methodology is arguably a key component of the next gen-
eration of linguistic theories, which will probe directly into the nature of the unitary
language computation performed by language users. In Ristad’s view this new gen-
eration of theories will supersede current generative theories, which, he argues, are
not a model of the language user at any level of abstraction.

The complexity game itself makes a number of substantial contributions to our
understanding of human language. First, the game led to an investigation of the
intrinsic properties two elements in an anaphoric relationship must have. In this part
of the game the minimizer falsified a widely-accepted agreement constraint (the
SAC) and proposed an alternative agreement condition (the AUC). Second, the game
has considered aspects of the interpretation of anaphora which are not captured by
work that only considers the syntactically determined distribution of coreference
relations, the typical approach in the generative tradition. In particular, the three
principles of the standard Binding Theory do not specify a complete mapping from
phrase structure to referential dependencies. Condition A does not link an anaphor to
a unique antecedent because there may be more than one potential antecedent in its
local domain. Condition B and Condition C only specify relations of obviation and
therefore do not link an anaphor to an antecedent at all. The investigation of the
Anaphora Problem is a first step towards a complete specification of the computa-
tions language users must perform in order to interpret utterances containing
anaphora. Finally, the third result of the complexity game is that it forces a clear
choice between two competing analyses of VP-ellipsis, which it is difficult to choose
between using just the methods of generative linguistics.

5. Conclusions

We have seen that URP for LFG and WG is NP-hard. In particular, it was shown
that a sub-problem, known as the Lexical Resolution Problem (LRP), is NP-hard
with respect to these theories. Ristad’s proof that the LRP with respect to the Barri-
ers and Lasnik—Saito models of grammar is also NP-hard was shown to fail for
essentially non-technical reasons. Apart from a Case-theoretic problem with the
proof, it relied on the assumption that the Barriers and Lasnik—Saito models allow
long distance A-movement, whereas in fact they do not.

Other work by Barton et al. (1987), not discussed here, has demonstrated that the
URP for GPSG (Gazdar et al., 1985) is EXP-POLY time-hard, whereas the URP for
a suitably revised version of GPSG has been shown to be NP-complete. There are

74 J. van de Koot | Lingua 97 (1995) 37-80

also complexity results for context-free language recognition, context-sensitive lan-
guage recognition and certain transformational language recognition problems
(Aspects style transformational grammars). Table 2 gives an overview.

Table 2
The complexity of some linguistic recognition problems.

Class Example problem Resource bound

P Context-free language Polynomial time on a
recognition deterministic TM

NP LFG recognition; Polynomial time on a
WG recognition; nondeterministic TM

Revised GPSG (Barton et al.,
1987); Lasnik—Saito/Barriers

recognition?

PSPACE Context-sensitive language Polynomial space on a
recognition deterministic TM

EXP Certain transformational Exponential time on a
language recognition problems deterministic TM

EXP-POLY GPSG recognition (version Det time O(cf™) for some
Gazdar et al., 1985) constant ¢ and polynomial f(n)

It seems that most modern linguistic theories are — computationally speaking — in
the same boat. Their associated recognition problem is NP-hard. For Revised GPSG
there is even a proof that its recognition problem is NP-complete (i.e. in NP). If it
could be shown for all these theories that the associated recognition problem is in
fact NP-complete, then that would be a very interesting result. Recall that NP-com-
plete problems have the curious property that they are hard to solve but their solu-
tions are easy to verify. In this sense, NP-complete problems are on the verge of
tractability. Problems that are PSPACE-hard, EXP-hard or even EXP-POLY-hard
cannot be verified efficiently.

I mentioned earlier that it follows from a proof that the URP for a linguistic model
is NP-hard that there is nothing in that model that guarantees efficient parsing. I was
careful at that point not to add: “and therefore that linguistic model is inadequate”,
because that is not at all a necessary consequence. How, then, should we interpret a
proof that the URP for some linguistic model is NP-hard?

This question is best answered by asking another one. Do we have any a priori
reasons to assume that there do not exist any subproblems of the general problem of
natural language comprehension that are computationally intractable? The answer to
this question, as we have seen in section 4, is negative. Ristad’s direct complexity
analysis shows that language users must perform computations which are NP-hard.

Direct complexity analysis provides insight into which language computations are
computationally intensive and which are not. Thus, it becomes possible to predict in
which areas of an empirically adequate model of the language user computational

J. van de Koot / Lingua 97 (1995) 37-80 75

complexity will show up. Since the linguistic theory specifies the linguistic knowl-
edge of the language user, this may allow one to identify parts of the linguistic the-
ory as computationally inadequate or unnaturally powerful, although some caution is
required in the case of the latter. This is because an overly powerful linguistic theory
might be restricted either by constraining the linguistic theory itself or by the impo-
sition of an appropriate performance constraint (e.g. a locality principle for parsing;
cf. the discussion of the LFG complexity results in section 3.2.3). So if one shows
that certain parts of a linguistic model make the URP for that model computationally
intractable, then one must ask whether those parts are unnaturally powerful (because
they are compatible with phenomena which do not occur in natural languages) or
whether their complexity is inherited from the complexity of the underlying lan-
guage comprehension problem (in which case the parts of the model giving rise to
computational intractability are a necessary component of an empirically adequate
linguistic theory). As we have seen, there are reasons to believe that the NP-hardness
proofs for LFG and WG have identified unnaturally powerful machinery.

Finally, direct complexity analysis opens up a new avenue to the study of lan-
guage, complete with a research methodology with a rather different orientation than
that of the generative tradition. It is based on the interpretation of human language
as a computational system and studies the complexity of natural language computa-
tions with the aim to improve our understanding of its form.

Appendix
The following proof is taken verbatim from Ristad (1988).
Theorem. The LRP is NP-hard in the Barriers model.

Proof. On input 3-CNF formula F, the reduction will create a lexicon L and a D-
structure that represents F, then apply move-a, and finally insert underspecified lex-
ical forms to derive an incomplete S-structure that can be completed according to
lexicon L if and only if F is satisfiable. The crux of the reduction is to represent each
literal with the noun complement structure [N [[VP]] in (1) (for example, desire
[to visit places]):

(1) Inp;-- Inp; N [1p, [€] I [vp, V NPy]]]
The Barriers model endows this construction with the required characteristics:

1. Transparent to extraction. NP, , can be moved out of NP, in the structure (1). VP
is a BC and barrier for NP;,, because it is not L-marked, but NP,,; can adjoin to
the non-argument VP and void its barrierhood because nonarguments may be
freely adjoined to. Both NP, and IP; are L-marked, and therefore are neither BCs
nor barriers for further NP, raising. Thus, NP,,, can be A-moved to any c-com-
manding specifier-of-IP position [e] without violating the ECP because all traces

76 J. van de Koot / Lingua 97 (1995) 37-80

are properly governed (both 6-governed by the verb V that selects NP, , and y-
marked (antecedent-governed) by the deleted trace adjoined to VP).

Reinhart (personal communication) suggests a similar, albeit marginal, natural
example where an NP containing an argument trace is topicalized to CP specifier
from an L-marked position: *

(7)? [What burning ¢,,,]; did John say [of what book];,; [#; would be magnificent]

2. Contains a landing site that agrees with the constituent head. The internal IP;
contains a specifier position (landing site) that will agree with I by specifier-head
agreement in non-lexical categories; the specifier position will also agree with N
(the constituent head), by predication. Alternatively, head movement from V to [
to N can create an inflected noun [y [, V I] N] in the X° position of NP, that will
agree with the landing site. Although I cannot find a natural example of such an
inflected noun, no arguments or analyses exclude it in principle. A close natural
example is noun incorporation in Mohawk verbs (Baker, 1985: 139).

3. Undergoes obligatory movement. V assigns a 8-role but no case to the NP, posi-
tion, requiring NP;,, to move. This is possible if V has lost its ability to assign
case (passive morphology) or if NP,,; is the underlying subject of VP,, as in many
current accounts (Sportiche, 1986; Fukui, 1986; Larson, 1988, etc.).

4. Selectional properties are correlated with @-features. V undergoes obligatory
head movement to the affix I, creating an inflected verb in the head of IP. As
noted above, the g-features will appear on the inflected verb by specifier-head
agreement, where they may be systematically correlated with the verb’s selec-
tional properties in the lexicon.

Details. The input to the reduction is a 3-CNF formula

J = Qg un3)(ua), upaltns) e (U Uiplt3)

with z clauses, 3 literals, and variables g;... q,,. As before, the reduction will create
a D-structure that represents F, and then apply move-a and lexical insertion to derive
the S-structure S. The reduction output will consist of an S-structure S containing
underspecified words and a lexicon L, such that the words in S can be resolved
according to L if and only if F is satisfiable.

* Chomsky (pc) suggests that the correct analysis of (7) is
(6) [what burning}; did John say [[; of what book] would be magnificent]

and that a better topicalization example might be What burning did John say (that) of that book, Mary
thought would be magnificent.]

J. van de Koot / Lingua 97 (1995) 37-80 77

The reduction algorithm consists of five steps:

1. Create the two p-features VBL and TRUE
The m-ary vBL feature identifies the formula variables: the formula variable g, is
associated with the feature [vBL k]. The final binary g-feature TRUE denotes the
truth assignment to the given variable.

2. Create the D-structure representation of f.
For each literal u; in the i clause, create the D-structure noun complement con-
struction:

(®) [NPU Nij [IP,-j [e] Iij [VP,-j Vij NPij+1 111

where NP represents the subformula u;... u,3; NP, represents the subformula
Ujjsy - Uyy; and NO,-j bears the p-features of the variable g, that corresponds to the
literal u;;.

3. Apply head-movement within noun complements.
Move V;; to I;, and then move the inflected verb [V;; I;] to N;;:
9 [NP,-j N [1P,~j [e] I [vp,j ViNPy]

(10) e, [[V 1] Nyl [1p,; [eg] ¢ [vp, t NPyt]]

As a result, all X° positions other than N° positions have traces in them; N° posi-
tions are filled with inflected nouns of the form [[V I] N]. (The goal of this oper-
ation is to force agreement between the verb and the noun; this could also be
done by predication.)

4. Apply long distance NP-movement across noun complements.
Starting with the rightmost, innermost NP (NP,;) and scanning left and up, move
NP, to the specifier position [e;,] of the closest inflection I,, that agrees with it in
p-features:

(A1) ... Iney, (VI Nwl [ip,, [€1m] t [vp,, t NPjpyy...
[NPij [[V 1] Ny [[ij [e;t [VPU NPy, 1111171
(12) ... [ney, [V 1] Nl [1p,, NPyl t [yp, t NPjpy... 851111

The leftmost literal of each formula variable is assigned case in situ by the formula
literal that selects it; all other literals of the variable receive a 0-role but no case,
which is what forces them to move. All literals of a variable but the rightmost one
assign case to their specifier position, so that a literal will be able to land there. Our
third ally in making the movement obligatory is the extended projection principle,
which requires specifier of IP to be filled.

78 J. van de Koot | Lingua 97 (1995) 37-80

Movement is by adjunction to intermediate VPs, deleting intermediate traces. This
movement satisfies the ECP because all traces are properly governed and therefore
y-marked at S-structure (both 6-governed by the verb V that selects them, and
antecedent-governed by the deleted trace adjoined to VP). The movement satisfies
minimality trivially because the deleted trace is not excluded by VP. Because NPs
are only moved to specifier positions that c-command their bound traces, the result-
ing structure also satisfies the chain condition and binding theory when the chain is
created. Note that the movement is permissible independent of whether we express
the antecedence relations induced by move-a using indices or links (cf. Higgin-
botham, 1983).

Now NP agrees with its c-commanding NP, on the TRUE feature by specifier-
head agreement in IP and head-head agreement between I,,, and the head of NP,,.

5. Perform (underspecified) lexical insertion.
Insert the morphological form a8y, for the inflected noun [[V I} N;] when u; =
qx (that is, u; is not a negated variable); when u; = g7, insert the morphological
form a,8;yp, instead.

(13) . Inpy, [IV 1] Niwl L, INPy] t [y, t NPy J]]

(A4) ... Ine, [aBiyoc] Lip,, [0B:7°0:] t [vp, t NPy 111

Note that each ‘a;8; is a listed word; that y and y” are suffixes; and that ¢, is the
morphological realization of the g-feature [VBL k].

Further note that the surface structure is a string of inflected words. For exam-
ple, on input f = q,9%¢19,q"9; the reduction algorithm would yield the surface
string or linguistic expression:

a1 B1y0; 082701 022y 02 aify0; asBiye asfsye;

We now turn to morphological and lexical details of the reduction, namely how
we ensure that each clause has one true literal, that literals and variables may be true
or false, and that negation changes truth values.

The lexicon contains ambiguous inflected nouns [/V I] N] that have undergone
verbal incorporation. we define the morphological primitives and lexicon to ensure
that the N-complement structure NP;; for the first literal in the ith clause u;, either (a)
corresponds to a true literal, or (b) selects a true literal (as represented by) NP, or
(c) selects a false literal NP,, that will select a true literal NP;;. Similarly, the N-com-
plement structure NP;, for the second literal in the ith clause u;, must either (a) cor-
respond to a true literal, (b) correspond to a false literal, or (c) correspond to a false
literal and selects a true literal NP;;. Finally, the structure NP, for u;;, the third and
final literal in the ith clause, may correspond to a true or false literal.

The lexical system requires one g-feature TRUE on nouns to encode variable truth
assignments; one non-g-feature LITERAL to encode literal truth values on both nouns

J. van de Koot / Lingua 97 (1995) 37-80 79

and verbs; and one non-g-feature T on nouns that verbs can select for. Recall that we
are assuming that the m-ary ¢-feature VBL will be morphologically realized on the
nouns in the lexicon, and will distinguish the formula variables: Nj; and N,,, bear the
same VBL value if and only if u; and u,, are literals of the same variable.

The morphological system is constructed assuming the relativized head definition
of DiScullio and Williams (1987). There are six ambiguous morphological primi-
tives: the prefixes a, a,, a; and roots f;, f5,, ff;. Together they define three ambigu-
ous words a8, a,f,, and a;f;, which may each combine with either of the two nom-
inal suffixes y, v".

Listed word Prefix (a;) features Root (B) features
a,f N [LITERAL 1] V [LITERAL 1]

V [LITERAL O, Select T] N [LITERAL 0]
af, N [LITERAL 1, T] V [LITERAL 1]

V [LITERAL 0] N [LITERAL 0]

V [LITERAL 0, Select T] N [LITERAL 0, T]
a3 N [LITERAL 1, T) V [LITERAL 1]

V [LITERAL 0] N {LITERAL 0]

The suffixes relate variable truth assignments to literal truth values. For example v’
will only be lexically inserted to represent a negated variable, and therefore inversely
relates the truth value of the variable and literal.

Suffix Features Selects

y N [TRUE 1] [LITERAL 1]
N [TRUE 0} [LITERAL 0]

»’ N [TrRUE 1} {LITERAL 0]
N [TrUE 0] [LITERAL 1]

Finally, there are m listed inflectional affixes corresponding to the m possible values
of the vBL g-feature. This completes the presentation of the reduction algorithm.

References

Baker, M., 1985. Incorporation: A theory of grammatical function changing. Ph.D. disseration, MIT
Department of Linguistics and Philosophy. (Published by University of Chicago Press, 1987.)

Barton, G., R. Berwick and E. Ristad, 1987. Computational complexity and natural language. Cam-
bridge, MA: MIT Press.

Bresnan, J., 1978. A realistic transformational grammar. In: M. Halle, J. Bresnan, G. Miller (eds.), Lin-
guistic theory and psychological reality. Cambridge, MA: MIT Press.

Bresnan, J., 1982. The mental representation of grammatical relations. Cambridge, MA: MIT Press.

Brody, M., to appear. Lexico-logical form: A radically minimalist theory. Cambridge, MA: MIT Press.

Chomsky, N., 1980. Rules and representations. New York: Columbia University Press.

80 J. van de Koot / Lingua 97 (1995) 37-80

Chomsky, N., 1986. Barriers. Cambridge, MA: MIT Press.

Chomsky, N. and H. Lasnik, 1991. Principles and parameters theory. Ms., MIT. To appear in J. Jacobs,
A. von Stechow, W. Sterneveld, T. Vennemann (eds.), Syntax: An international handbook of con-
temporary research. Berlin: Walter de Gruyter.

Chomsky, N. and G. Miller, 1963. Introduction to the formal analysis of natural languages. In: R.D.
Luce, R.R. Bush, E. Galanter (eds.), Handbook of mathematical psychology, Vol. II, 269-322. New
York: Wiley.

Fukui, N., 1986. A theory of category projection and its applications. Unpublished Ph.D. dissertation,
Department of Linguistics and Philosophy, MIT

Gazdar, G., E. Klein, G. Pullum and I. Sag, 1985. Generalized phrase structure grammar. Oxford:
Blackwell.

Giorgi, A., F. Pianesi and G. Satta, 1989. The computational complexity of binding theory’s satisfiabil-
ity and verification problems. Unpublished manuscript, IRST, Trento, Italy.

Grice, P., 1957. Logic and conversation. In: Cole and J.L. Morgan (eds), Syntax and semantics, Vol. 3:
Speech acts, 41-58. New York: Academic Press.

Harel, D., 1987. The spirit of computing. Wokingham: Addison-Wesley.

Higginbotham, J., 1983. Logical form, binding and nominals. Linguistic Inquiry 14, 395-419.

Hudson, R., 1984. Word grammar. Oxford: Blackwell.

Hudson, R., 1990. English word grammar. Oxford: Blackwell.

Koot, J. van de, 1992. Word grammar recognition is NP-hard. In: J. van de Koot (ed.), UCL Working
Papers in Linguistics 4.

Larson, R., 1988. On the double object construction. Linguistic Inquiry 19(3), 335-391.

Lasnik, H. and M. Saito, 1984. On the nature of proper government. Linguistic Inquiry 15, 235-289.

Marcus, M., 1980. A theory of syntactic recognition for natural language. Cambridge, MA: MIT Press.

Ristad, E.S., 1986. Sources of complexity in GPSG Theory. Theoretical Linguistics 13(1/2), 105-124.

Ristad, E.S., 1988. The complexity of human language comprehension. Technical Report 964, Artificial
Intelligence Laboratory, MIT.

Ristad, E.S., 1991. A constructive complexity thesis for human language. Ms., Princeton University.

Ristad, E.S., 1993. The language complexity game. Cambridge, MA: MIT Press.

Sperber, D. and D. Wilson, 1986. Relevance: Communication and cognition. Oxford: Blackwell.

Sportiche, D., 1986. A theory of floating quantifiers and consequences. Proceedings of NELS 17.

Williams, E., 1984. Grammatical relations. Linguistic Inquiry 15, 639-673.

